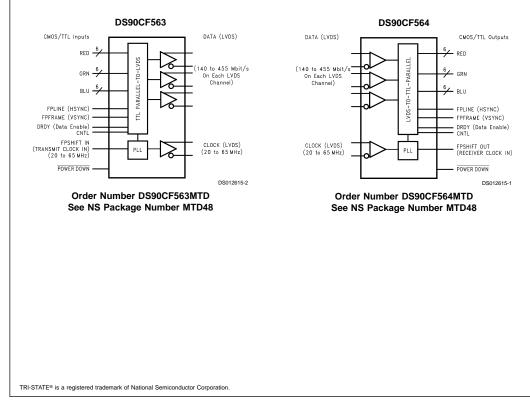
DS90CF563/DS90CF564 LVDS 18-Bit Color Flat Panel Display (FPD) Link—

65 MHz

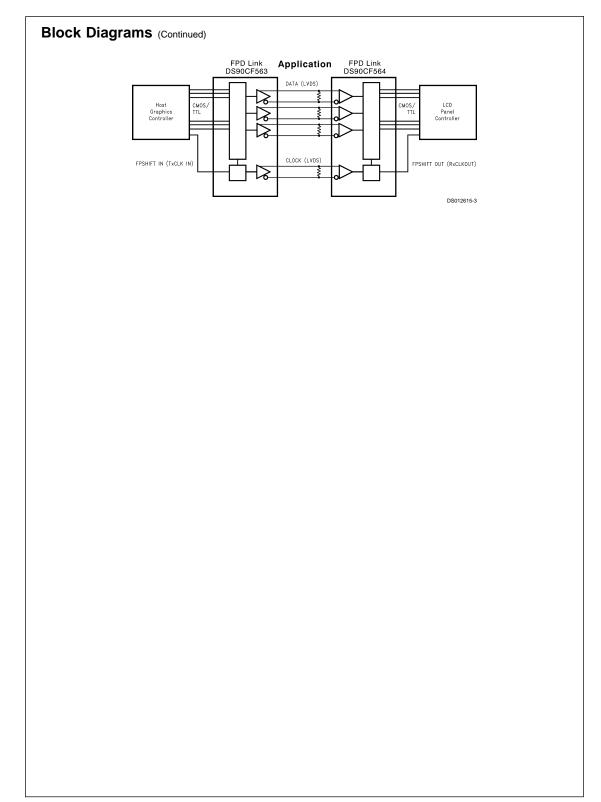
National Semiconductor

DS90CF563/DS90CF564 LVDS 18-Bit Color Flat Panel Display (FPD) Link— 65 MHz

General Description


Block Diagrams

The DS90CF563 transmitter converts 21 bits of CMOS/TTL data into three LVDS (Low Voltage Differential Signaling) data streams. A phase-locked transmit clock is transmitted in parallel with the data streams over a fourth LVDS link. Every cycle of the transmit clock 21 bits of input data are sampled and transmitted. The DS90CF564 receiver converts the LVDS data streams back into 21 bits of CMOS/TTL data. At a transmit clock frequency of 65 MHz, 18 bits of RGB data and 3 bits of LCD timing and control data (FPLINE, FPFRAME, DRDY) are transmitted at a rate of 455 Mbps per LVDS data channel. Using a 65 MHz clock, the data throughput is 171 Mbytes per second. These devices are offered with falling edge data strobes for convenient interface with a variety of graphics and LCD panel controllers.


This chipset is an ideal means to solve EMI and cable size problems associated with wide, high speed TTL interfaces.

Features

- 20 to 65 MHz shift clk support
- Up to 171 Mbytes/s bandwidth
- Cable size is reduced to save cost
- 290 mV swing LVDS devices for low EMI
- Low power CMOS design (< 550 mW typ)
- Power-down mode saves power (< 0.25 mW)
- PLL requires no external components
- Low profile 48-lead TSSOP package
- Falling edge data strobe
- Compatible with TIA/EIA-644 LVDS standard
- Single pixel per clock XGA (1024 x 768)
 Supports VGA, SVGA, XGA and higher
- 1.3 Gbps throughput

© 1998 National Semiconductor Corporation DS012615

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (V _{CC})	-0.3V to +6V
CMOS/TTL Input Voltage	-0.3V to (V _{CC} + 0.3V)
CMOS/TTL Output Voltage	-0.3V to (V _{CC} + 0.3V)
LVDS Receiver Input Voltage	-0.3V to (V _{CC} + 0.3V)
LVDS Driver Output Voltage	-0.3V to (V _{CC} + 0.3V)
LVDS Output Short Circuit Duration	Continuous
Junction Temperature	+150°C
Storage Temperature	–65°C to +150°C
Lead Temperature (Soldering, 4 sec)	+260°C
Maximum Package Power Dissipa MTD48 (TSSOP) Package:	ation @ +25°C

DS90CF563	1.98W
DS90CF564	1.89W
Package Derating:	
DS90CF563	16 mW/°C above +25°C
DS90CF564	15 mW/°C above +25°C
This device does not meet 2000	/ ESD rating (Note 4) .

Recommended Operating Conditions

	Min	Nom	Max	Units
Supply Voltage (V _{CC})	4.75	5.0	5.25	V
Operating Free Air	-10	+25	+70	°C
Temperature (T _A)				
Receiver Input Range	0		2.4	V
Supply Noise Voltage (V _{CC})			100	mV _{P-P}

Electrical Characteristics

Over recommended operating supply and temperature ranges unless otherwise specified

Symbol	Parameter	Condition	Min	Тур	Max	Units	
CMOS/	ITL DC SPECIFICATIONS						
VIH	High Level Input Voltage			2.0		V _{cc}	V
VIL	Low Level Input Voltage		GND		0.8	V	
V _{он}	High Level Output Voltage	I _{OH} = -0.4 mA		3.8	4.9		V
V _{OL}	Low Level Output Voltage	I _{OL} = 2 mA			0.1	0.3	V
V _{CL}	Input Clamp Voltage	I _{CL} = -18 mA			-0.79	-1.5	V
I _{IN}	Input Current	$V_{IN} = V_{CC}$, GND, 2.5V or 0.4V			±5.1	±10	μA
los	Output Short Circuit Current	V _{OUT} = 0V				-120	mA
LVDS D	RIVER DC SPECIFICATIONS					1	
V _{OD}	Differential Output Voltage	R _L = 100Ω		250	290	450	mV
ΔV_{OD}	Change in V _{OD} between Complementary Output States					35	mV
V _{CM}	Common Mode Voltage			1.1	1.25	1.375	V
ΔV_{CM}	Change in V _{CM} between Complementary Output States				35	mV	
V _{OH}	High Level Output Voltage			1.3	1.6	V	
V _{OL}	Low Level Output Voltage			0.9	1.01		V
l _{os}	Output Short Circuit Current	$V_{OUT} = 0V, R_{L} = 100\Omega$		-2.9	-5	mA	
l _{oz}	Output TRI-STATE® Current	Power Down = 0V, V _{OUT} = 0V		±1	±10	μA	
LVDS R	ECEIVER DC SPECIFICATIONS	-					
V _{TH}	Differential Input High Threshold	V _{CM} = +1.2V				+100	mV
V _{TL}	Differential Input Low Threshold			-100			mV
I _{IN}	Input Current	V _{IN} = +2.4V	$V_{\rm CC} = 5.5 V$			±10	μA
	V _{IN} = 0V					±10	μA
TRANS	MITTER SUPPLY CURRENT						
I _{CCTW}	Transmitter Supply Current,	$R_{L} = 100\Omega, C_{L} = 5 \text{ pF},$	f = 32.5 MHz		49	63	mA
	Worst Case	Worst Case Pattern	f = 37.5 MHz		51	64	mA
		(Figure 1, Figure 3)	f = 65 MHz		70	84	mA
I _{CCTG}	Transmitter Supply Current,	R _L = 100Ω, C _L = 5 pF,	f = 32.5 MHz		40	55	mA
	16 Grayscale	16 Grayscale Pattern	f = 37.5 MHz		41	55	mA
		(Figure 2, Figure 3)	f = 65 MHz		55	67	mA

Electrical	Characteristics	(Continued)
------------	-----------------	-------------

.

Over recommended operating supply and temperature ranges unless otherwise specified

Symbol	Parameter	Conditio	Min	Тур	Max	Units	
TRANS	MITTER SUPPLY CURRENT						
I _{CCTZ}	Transmitter Supply Current, Power Down	Power Down = Low			1	25	μA
RECEIV	ER SUPPLY CURRENT	-					
ICCRW	Receiver Supply Current,	C _L = 8 pF,	f = 32.5 MHz		64	77	mA
	Worst Case	Worst Case Pattern	f = 37.5 MHz		70	85	mA
		(Figure 1, Figure 4)	f = 65 MHz		110	140	mA
I _{CCRG}	Receiver Supply Current,	C _L = 8 pF,	f = 32.5 MHz		35	55	mA
	16 Grayscale 16 Grayscale Pattern f = 37.5 MHz				37	55	mA
		(Figure 2, Figure 4)	f = 65 MHz		55	67	mA
I _{CCRZ}	Receiver Supply Current,	Power Down = Low			1	10	μA
	Power Down						1

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The tables of "Electrical Characteristics" specify conditions for device operation.

Note 2: Typical values are given for V_{CC} = 5.0V and T_A = +25°C.

Note 3: Current into device pins is defined as positive. Current out of device pins is defined as negative. Voltages are referenced to ground unless otherwise specified (except V_{OD} and Δ V_{OD}).

Note 4: ESD Rating: HBM (1.5 k Ω , 100 pF)

PLL V _{CC} \ge 1000V

All other pins $\ge 2000V$

EIAJ (0 Ω , 200 pF) \ge 150V

Transmitter Switching Characteristics

Over recommended operating supply and temperature ranges unless otherwise specified

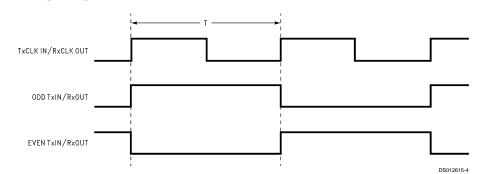
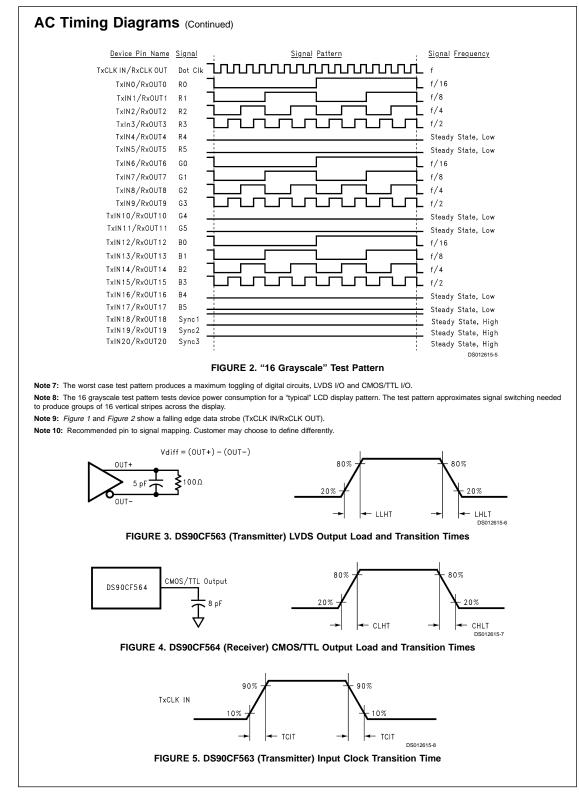
Symbol	Parameter	Min	Тур	Max	Units	
LLHT	LVDS Low-to-High Transition Time (Figure 3)		0.75	1.5	ns	
LHLT	LVDS High-to-Low Transition Time (Figure 3)			0.75	1.5	ns
TCIT	TxCLK IN Transition Time (Figure 5)				8	ns
TCCS	TxOUT Channel-to-Channel Skew (Note 5) (Figure 6)			350	ps
TCCD	TxCLK IN to TxCLK OUT Delay @ 25°C, V _{CC} = 5.0V	,	3.5		8.5	ns
	(Figure 9)					
TCIP	TxCLK IN Period (Figure 7)	15	Т	50	ns	
TCIH	TxCLK IN High Time (Figure 7)	0.35T	0.5T	0.65T	ns	
TCIL	TxCLK IN Low Time (Figure 7)	0.35T	0.5T	0.65T	ns	
TSTC	TxIN Setup to TxCLK IN (Figure 7)	f = 65 MHz	5	3.5		ns
THTC	TxIN Hold to TxCLK IN (Figure 7)		2.5	1.5		ns
TPDD	ransmitter Powerdown Delay (<i>Figure 18</i>)				100	ns
TPLLS	Transmitter Phase Lock Loop Set (Figure 11)				10	ms
TPPos0	Transmitter Output Pulse Position 0 (Figure 13)		-0.30	0	0.30	ns
TPPos1	Transmitter Output Pulse Position 1		1.70	1/7 T _{clk}	2.50	ns
TPPos2	Transmitter Output Pulse Position 2		3.60	2/7 T _{clk}	4.50	ns
TPPos3	Transmitter Output Pulse Position 3		5.90	3/7 T _{clk}	6.75	ns
TPPos4	Transmitter Output Pulse Position 4		8.30	4/7 T _{clk}	9.00	ns
TPPos5	Transmitter Output Pulse Position 5		10.40	5/7 T _{clk}	11.10	ns
TPPos6	Transmitter Output Pulse Position 6		12.70	6/7 T _{clk}	13.40	ns

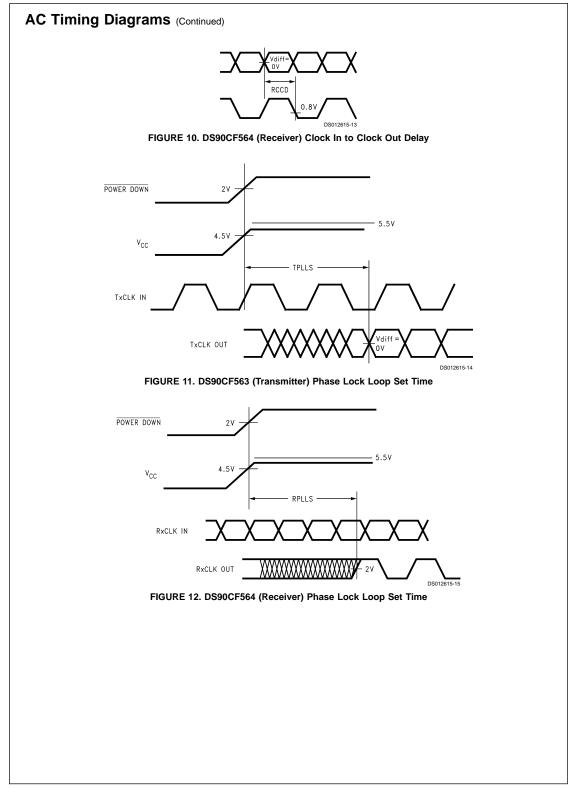
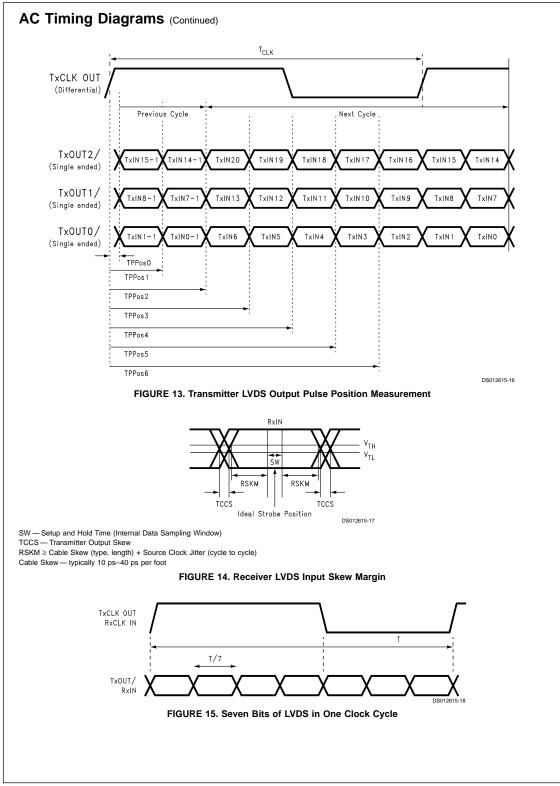
Note 5: This limit based on bench characterization.

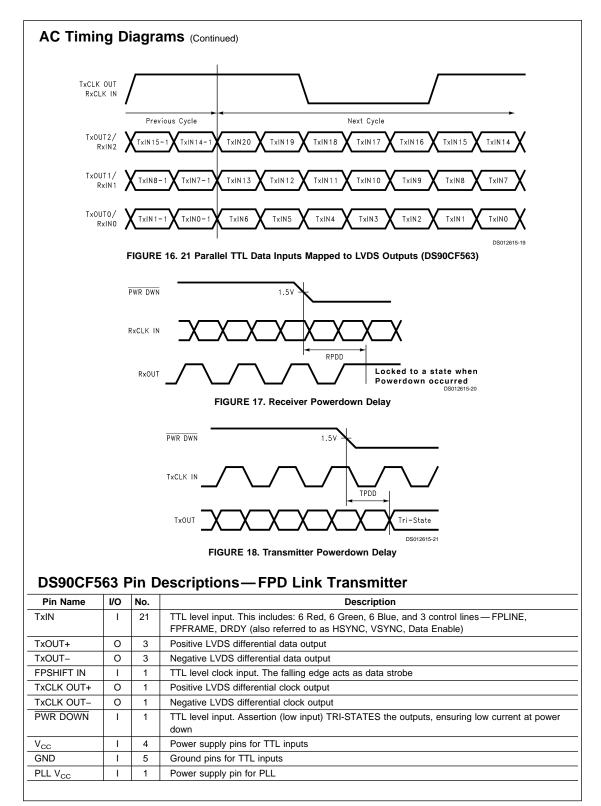
Over reco	ommended operating supply and temperature ranges unle	ess otherwise specified.				
Symbol	Parameter		Min	Тур	Max	Units
CLHT	CMOS/TTL Low-to-High Transition Time (Figure 4)			2.5	4.0	ns
CHLT	CMOS/TTL High-to-Low Transition Time (Figure 4)			2.0	3.5	ns
RCOP	RxCLK OUT Period	15	Т	50	ns	
RCOH	RxCLK OUT High Time	f = 65 MHz	7.8	9		ns
RCOL	RxCLK OUT Low Time	f = 65 MHz	3.8	5		ns
RSRC	RxOUT Setup to RxCLK OUT	f = 65 MHz	2.5	4.2		ns
RHRC	RxOUT Hold to RxCLK OUT	f = 65 MHz	4.0	5.2		ns
RCCD	RxCLK IN to RxCLK OUT Delay @ 25°C, V _{CC} = 5.0V		6.4		10.7	ns
	(Figure 10)					
RPLLS	Receiver Phase Lock Loop Set (Figure 12)				10	ms
RSKM	RxIN Skew Margin (Note 6) (Figure 14)	V _{CC} = 5V, T _A =25°C	600			ps
RPDD	Receiver Powerdown (Figure 17)			1	μs	

Note 6: Receiver Skew Margin is defined as the valid data sampling region at the receiver inputs. This margin takes into account transmitter output skew (TCCS) and the setup and hold time (internal data sampling window), allowing for LVDS cable skew dependent on type/length and source clock (TxCLK IN) jitter. RSKM ≥ cable skew (type, length) + source clock jitter (cycle to cycle)

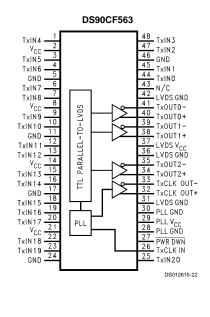
AC Timing Diagrams

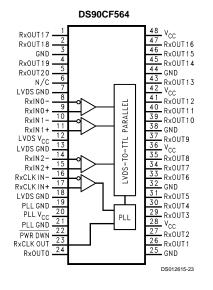



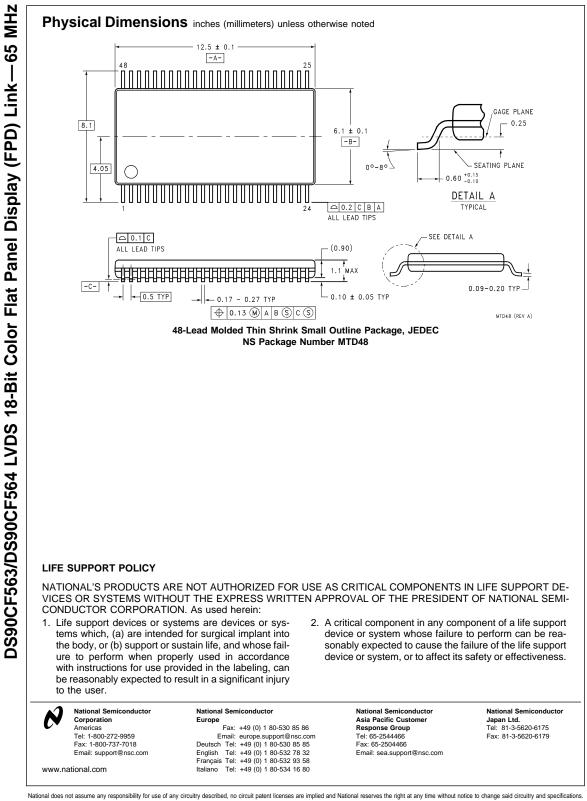




FIGURE 1. "Worst Case" Test Pattern

.


DS90CF563 Pin Descriptions—FPD Link Transmitter (Continued)


Pin Name	I/O	No.	Description
PLL GND	I	2	Ground pins for PLL
LVDS V _{CC}	I	1	Power supply pin for LVDS outputs
LVDS GND	1	3	Ground pins for LVDS outputs


DS90CF564 Pin Descriptions—FPD Link Receiver

Pin Name	I/O	No.	Description
RxIN+	1	3	Positive LVDS differential data inputs
RxIN-	1	3	Negative LVDS differential data inputs
RxOUT	0	21	TTL level data outputs. This includes: 6 Red, 6 Green, 6 Blue, and 3 control lines—FPLINE, FPFRAME, DRDY(also referred to as HSYNC, VSYNC, Data Enable)
RxCLK IN+	1	1	Positive LVDS differential clock input
RxCLK IN-	1	1	Negative LVDS differential clock input
FPSHIFT OUT	0	1	TTL level clock output. The falling edge acts as data strobe
PWR DOWN	1	1	TTL level input. Assertion (low input) maintains the receiver outputs in the previous state
V _{cc}	1	4	Power supply pins for TTL outputs
GND	1	5	Ground pins for TTL outputs
PLL V _{CC}	1	1	Power supply for PLL
PLL GND	1	2	Ground pin for PLL
LVDS V_{cc}	1	1	Power supply pin for LVDS inputs
LVDS GND	1	3	Ground pins for LVDS inputs

Connection Diagrams

